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THE CRYSTALLOGRAPHICG POINT GROUPS AS
SEMI-DIRECT PRODUCTS

By S. L. ALTMANN
Department of Metallurgy, Unzversity of Oxford
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This paper aims at providing a systematic treatment of the crystallographic point groups. Some
well-known properties of them, in terms of the theory of the poles of finite rotations, are first
discussed, so as to provide a simple way for recognizing their invariant subgroups. A definition of
the semi-direct product is then given, and it is shown that all crystallographic point groups can be
expressed as a semi-direct product of one of their invariant subgroups by a cyclic subgroup. Many
useful relations between point groups can be obtained by exploiting the properties of the triple
and mixed triple semi-direct products, which are defined.

Much of the rest of the paper is devoted to the theory of the representations of semi-direct
products. The treatment here parallels that given by Seitz (1936) for the reduction of space groups in
terms of the representations of its invariant subgroups (the translation groups). The latter, how-
ever, are always Abelian and this is not always the case for point groups. The full treatment of the
general case, such as given by McIntosh (1958), is laborious and it is shown that, if the emphasis is
placed on the bases of the representations, rather than the representations themselves, it is possible
to achieve the reduction of the point groups by a method hardly more involved than that required
when the invariant subgroup is Abelian.

It is also shown that, just as for space groups, the representations of the invariant subgroups can
be denoted and visualized by means of a vector, which allows a very rapid classification of the
representations, very much as the k vector as used by Bouckaert, Smoluchowski & Wigner (1936)
allows the formalism of the Seitz method for space groups to be carried out in a graphical fashion.

One of the major consequences of this work is that it affords a substantial simplification in the
use of the symmetrizing and projection operators that are required to obtain symmetry-adapted
functions: a very systematic alternative to the method given by Melvin (1956) is therefore provided.

In the last section of the paper all the techniques discussed are applied in detail, as an example,
to the cubic groups. The projection operators are used to obtain symmetry-adapted spherical
harmonics for these groups.

The paper might be found useful as an introduction to the methods for the reduction of space
groups.
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POINT GROUPS AS SEMI-DIRECT PRODUCTS 217

1. InTrRODUCTION

One of the major problems in the study of the symmetries of the point groups consists in
the derivation of functions that belong to the irreducible representations of these groups,
which we shall call, following Melvin (1956), symmetry-adapted functions. In order to do
this one must use some well-known symmetrizing or projection operators which will be
described later on in this paper. When the functions in question are spherical harmonics—
which are required in a variety of problems such as cellular calculations in metals or the
study of molecular hybrids—the application of these operators to the point groups can be
done in a systematic and simple fashion, as shown by Altmann (19574). Nevertheless, the
use of the symmetrizing operators can be rather tiresome in the more general cases and
Melvin (1956) gave a method to simplify the work. Melvin’s method, however, is largely
empirical, being based on some observed features of the representations. Accordingly,
Altmann (19576) suggested a more systematic procedure, based on the application of the
method first used by Seitz (1936) and further developed by Bouckaert et al. (1936) for the
reduction of space groups. The possibility of this application arises from the fact that all
crystallographic point groups admit of an invariant subgroup which is either cyclic or a
direct product of cyclic groups. This can therefore take the place of the translation group
in Seitz’s theory and, just as for the space groups, the irreducible representations of the
group can be generated in terms of the irreducible representations of its invariant subgroup.
Of course, to accomplish this task would appear to be a problem of mere academic interest,
because the reduction of the point groups is a fully solved problem. Nevertheless, when it
is carried out by the method suggested, it is found that a considerable simplification can
be obtained in the handling of the symmetrizing operators. Therefore, following the above-
mentioned suggestion, McIntosh (1960) remarked that the above procedure is tantamount
to expressing the point groups as semi-direct products, as introduced by Mackey (1949,
1952). In fact, Mackey and others (see Lomont 1959, chapter V) have given a number of
powerful theorems for the reduction of semi-direct products. The advantage of this approach,
over the one originally suggested by the present author lies in the fact that the semi-direct
product theory can be used for invariant subgroups which are not Abelian: the theory given
by Seitz provided only for Abelian subgroups, since the translation subgroup of a space
group always satisfies this condition. Accordingly, MclIntosh (1958, 1960) developed in
detail the theory of the reduction of the semi-direct products. However, McIntosh con-
structed his theory starting from the matrix representations and going from them to the
corresponding bases. We shall show in this paper that if this approach is reversed one
obtains a formalism that is much easier to use. We do not propose in this paper to provide
an exhaustive treatment of the semi-direct products, as this can be obtained from the
references given. Rather, we want to use the theory very much as Bouckaert et al. (1936)
used Seitz’s theory, to provide a formalism that is both graphical and extremely easy to
use. Nevertheless, we shall give in § 5 some formal proofs of such parts of the theory as are
required to put our formalism on a sure footing.

It should be noticed that irrespective of its use in the derivation of symmetry-adapted
functions, the semi-direct product theory of the point groups affords the most systematic
approach to their study and it is therefore a valuable tool on its own. It is extremely useful

28 Vor. 255. A.
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218 S. L. ALTMANN

in particular in bringing out clearly the relations, which might appropriately be called
genealogical, between the symmetries of two point groups (see §4).

Finally, the study of this theory might be found useful as a preliminary to the heavier
work required in the reduction of space groups. In fact, the present work and the examples
given here can be considered as a model of the work required in the reduction of the space
groups without screws or glides, with the advantage that, owing to the small order of the
groups concerned, all the features of the work can be more easily analyzed.

We shall start by revising, in §§ 2 and 3, some well-known properties of the point groups
and semi-direct products.

2. REVISION ON POINT GROUPS

We shall first consider some concepts that are important in the theory of the proper
rotation groups (see Zassenhauss 1949 or, for a fuller treatment, Burckhardt 1947). A basic
idea in this theory is that of the poles of a rotation, which are the two points of the unit sphere
that are left invariant by the rotation: if G, is a rotation with pole @ we can write G,o = a.
In general, an operation X will transform the pole a of G, into another pole f: Xo = f.
We say that ¢ and £ are conjugate and we shall prove that £ is the pole of the rotation XG, X~1.

In fact XG, X1 = XG, X' Xo = XG0 = Xo = f. (1)

In order to express briefly this result, we define a concept which will be much used in
this paper, namely, that of the comjugation operator: we note that XG,X~! can be taken to
define an operator X that transforms a rotation G, into another XG,X-1. The relation
X’Ga = XG,X-is the definition of the conjugation operator X. The result that we obtained
in (1) can now be stated as follows: if « is the pole of G, Xa is the pole of fG’“: A/}Ga = Gy,

Until now, we have not made use of group properties. If G, belongs to a group G and
Xe G, we say that « and f = X« are conjugate under the group G and we can see that
conjugate poles correspond to conjugate operations, that is, to operations in the same
class. ’

The above considerations are very useful in discussing invariance properties. Let us
consider a group of operations N with poles «, f, ..., p, and assume that N is invariant under
conjugation with a given operation C, that is, that CN e N for all Ne N. We can write this
more compactly as CN = N. Now the poles of CN are Cu, Cf, ...,Cp and as CN coincides
with N this set must be the same as a, f, ..., p except perhaps for the order. We conclude that
if N is invariant under C, the latter permutes the poles of N.

Clearly, if N is an invariant subgroup of G it is invariant under conjugation with every
operation of G. That is: the poles of an invariant subgroup are permuted among themselves by all
the operations of the group. As an example, consider the group of the rotations of the cube, O.
There are three binary axes C, parallel to the edges of the cube. Clearly they (and hence
their poles) are permuted around by all the operations of the cube. Hence the subgroup
made up of the identity and these 3C, (which is the dihedral group D,) is an invariant
subgroup of O (as well as of T and T, as can easily be seen).

Another well-known fact about the poles of a point group is that they separate out into
disjointed systems of conjugate poles and this leads to the existence of only ten crystallo-
graphic pure rotation groups.
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POINT GROUPS AS SEMI-DIRECT PRODUCTS 219

To form the improper rotation groups (that is groups that contain operations other than
proper rotations—which can always be given as rotary inversions) we must proceed in
either of the two following ways (see Weyl 1952 for a simple proof of this result).

(i) We take any pure rotation group G and form the group G’ = G+ Gi. Here ¢ is
the inversion and the plus sign, as often in this paper, must be understood in the Galois
sense as denoting a juxtaposition of elements. Because ¢ commutes with any rotation,
the right-hand side here can be written as a direct product G’ = G x G;, where G, = E+1
and £ is the identity element.

(ii) We find a subgroup of G of index 2 (hence invariant) which we shall call the £alving
subgroup H, and form the improper group G’ = H+ (G —H): (here G—H means the set
of elements of G that does not belong to H). It is easy to find the halving subgroups for all
the pure rotation groups, by using the criterion given in the last italicized statement above.
For the cyclic groups G,, H = Gy, (if n is even). For the D,, H = G, and, if n is even, also
H =Dy, (except when n =2 when H is the trivial identity group). The only invariant
subgroup of T is D,, which is not halving, and for O and T,, H = T. For future reference,
it is important to notice that except for the G, the group G always possesses poles outside
the halving subgroup H.

We list in table 1 the ten pure rotation groups and their halving subgroups. It should be
noticed that the improper groups obtained as in (i) above contain the inversion as a sym-
metry operation whereas those from (ii) do not (quite clearly, because G—H does not
include E). They are listed in the third and fourth columns of the table, respectively.

We wish to express the results given in table 1 in terms of semi-direct products. This we
shall do in §4. First, we shall consider in the next section the concept of semi-direct

product.
TABLE 1. PROPER AND IMPROPER ROTATION GROUPS

proper halving groups groups
groups subgroups with ¢ without ¢
G, - G; —
G, G, Con G
C3 - C3i -
G, G, Gy S,
Ge Gy G Gy,
D, G, Dy, G,
D3 CB D3d CSU
D, G, an G,
D, - Dy,
D6 CG Dﬁh CGU
D, - Dy,
T -— T, —
o T o, T,

3. SEMI-DIRECT PRODUCTS

We do not propose to discuss the most general definition of the semi-direct product: this
can be found in the references given in the Introduction, for instance Lomont (1959)
Instead, we shall provide a definition adequate for our purposes and which is very simple.}

Consider two groups N and G which have no common element except the identity and
such that N is invariant under conjugation with any element of G: CN = N, for all C'e C.

T Our definition coincides with that of the ‘group product’ given by Buerger (1956, p. 486).
28-2
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220 S. L. ALTMANN

Then the set of all the products of one element of N times one element of C is a group G,
of which N is an invariant subgroup. We call G the semi-direct product of N and G,
G = NaC. (Notice that this symbol is not commutative: we agree to place the invariant
subgroup always first.)

We shall now discuss this definition and prove the theorem given. First, it is important
to notice that CN = N does 7ot mean that, for all Ne N, CN = N, but that CN, = N; with
N, N;e N. Thatis, CN,C~! = N, or

CN, = N,C. (2)
If we had N, = N, (2) would be a commutation relation and the product of N times G
would be a direct product. It is useful to regard (2) as a quasi-commutation relation that
allows us to alter the order of a product CN,, as long as we replace N, by N, = CN;:

CN, = CN,C. (3)
Analogously, N,C = CC-N. (4)

In these and other relations that contain the operator C, the reader must carefully
understand that €' must never be separated from the operation on which it acts, that is,
that CN must be used as a single symbol. For instance, CN, N, # C(N,NV,).

We shall make much use in this paper of the quasi-commutation relations (3) and (4).

In order to prove the theorem, we verify first the existence of the product

NiCj-NkCZ = M(C'jjvk) CjCl’

Now, because of the condition CN = N, C”ij e N and the right-hand side is a product
of an operation of N times an operation of G, and therefore belongs to the set in question.
The remaining group properties are simple to prove and we leave them to the reader.

As an example, consider N = G, and G = E+C, = G,, where the C, axis of the second
group is perpendicular to the Cj axis of the first. (Note that, in giving a semi-direct product
of two point groups, it is essential to define unambiguously the setting of the operations of
one group with respect to those of the other.) Clearly EC, = C,. Also C,C, = C,, because
C, interchanges the two poles (those of the C; axis) of Gs (cf. the first italicized statement
in §2). We can therefore form the group G;a G,, which is in fact D,

Let us consider the triple semi-direct products. If G = NAG and N = N'aC’, we have
G = (N'aC’) aC. It can readily be secen that a necessary and sufficient condition for the

lati
relation G:(N/AC/)AG:N’A(C’AC) (5)

to be valid is that G’ be invariant under G. For this to be the case the poles of N” and C’
must either be all in common or such that no pole of one group is taken into a pole of the
other under conjugation with C.

4. POINT GROUPS AS SEMI-DIRECT PRODUCTS

We shall first prove the following theorem: given a crystallographic point group G and
a maximal invariant subgroup of it, N (that is, an invariant subgroup which is not a sub-
group of another invariant subgroup of larger order), the coset representatives of the factor
group G/N are all powers of the same operation of G. This is the same as to say that all the
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POINT GROUPS AS SEMI-DIRECT PRODUCTS 221

coset representatives belong to the same pole of G (because G and G?, say, clearly belong
to the same pole).

We shall use in the proof the fact that all crystallographic point groups are solvable,
that is that they admit of a composition series

G=G,G,G,, ..,G,=E,

where G, is a maximal invariant subgroup of G, and G;/G,,, is cyclic. Let us write for
convenience G, = N: the above result means therefore that the factor group

G/N = NC, +NC,+...+NC, | (6)

is cyclic. Here r = &/n where /& and n are the orders of G and N, respectively, and the C’s
are the coset representatives. Because G/N is cyclic, we can express it in terms of powers
of one of the cosets in the right-hand side of (6), which we call NC

G/N = NC+ (NC)2+...+ (NC)". (7)

Here (NC)” must be equal to the identity element which, as well known for the factor
group, is N. That is, (NC)” = N. Here, and in (7), we can use the fact that N# = N for
all p, and then we obtain

G/N = NC+NC2+...+NC", NC'=N, (8)

which proves the theorem.
The coset representatives may or may not form a cyclic subgroup of G. In fact, in order
to satisfy the condition that appears in (8), one of the two following relations must hold

Cr=E, (9)
CreN. (10)

When (9) is verified, C+C?+...+C" is a group and clearly G = NaC. If it is not
possible to find a suitable coset representative Ce G for which (9) obtains, it means that
for all such C’s (10) is valid, that is, that there is no pole in G outside those of N. As this can
be the case only for cyclic groups (see the remark at the end of of § 2), we have shown that
all proper rotation groups, except perhaps some cyclic groups, can be written as semi-
direct products, the second factor of which is always a cyclic group. This means of course
that we are able to express the proper rotation groups as semi-direct products in all cases
of practical interest: the cyclic groups are so easy to handle that it is not of much use to be
able to factorize them. However, even these (written G,) will factorize when their order
n is an even number such that 4z is odd: N = C,, and C = C, so that C} = E and (9) is
satisfied.

It is now very easy to form semi-direct products for all the point groups, by inspecting
table 1. As an example, D; = C;+C;C, = C3a (E+C,) = C;aC,. To form the corre-
sponding improper group under the rule (ii) of §2, it is necessary to multiply by ¢ all the
operations in D, that do not belong to Cs; the group is: C3a (E+iC,) = C3aC, = C,,.
(It can easily be seen that, in fact, ¢ does not affect the invariance.) In general, if we con-
sider the proper point groups of the first column of table 1 they are (except C,, see above)
given by the semi-direct product of the halving (invariant) subgroup in the second column
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222 S. L. ALTMANN

times a group C,, whereas the semi-direct product of the same invariant subgroup times
a group G, will yield all the improper groups without inversion which are given in the last
column of table 1. T does not possess a halving subgroup, but as already shown before
(§2) D, is an invariant subgroup of it which generates a semi-direct product expression
for T. The improper groups with the inversion are not considered, because they are more
simply given as direct products (however, see below). We summarize these results in table 2.
In using semi-direct products attention must be paid (see the G;, example in §3) to the
relative orientation of the axes of the two factors and in order to do this we use a rotation
explained in the note at the head of the table.

TABLE 2. THE POINT GROUPS AS SEMI-DIRECT PRODUCTS

C, and C; are groups with the rotation axis and mirror plane parallel and perpendicular, respectively,
to the principal axis of the invariant subgroup. The rotation axis and mirror plane in G; and C; are per-
pendicular and parallel, respectively, to the principal axis. The symmetry elements in G; and G are as in
C; and C; but they also bisect two secondary axes of the invariant subgroup. The C; axis of C; and Dy is
diagonal to the three C, axes of D,.

proper rotation groups improper rotation groups (without )
name of semi-direct semi-direct name of
group product form product form group
) o o -
G, G, AC, G, AG, C,
(0N —_ _— _
C, — — S,
Cs G;AC, G;AG, = Cyx G G,
D, C,ACi = Cyx G CoaCi =Gy x G C,,
D, G;A G C3A G G,
D, C,nC C, A G C,,
D,AC; D,AC = S,AG; D,,
D, Cea G (OIVN 04 Cg,
D;AC; DyAC = S5AC; D,,
T D,ACs — —
o TAC; =D,AD; TAGC; =D, xC,, T,

A few comments about the expressions in table 2: first, it should be noticed that the
improper groups with inversion derived from D, (» even) admit a cyclic group S,, as an
invariant subgroup, and that therefore an alternative form for their semi-direct product
expression can be written, which might be sometimes advantageous because both factors
are cyclic. Secondly, the factorization in semi-direct products can be iterated as shown at
the end of § 3 (see equation (5)). In particular we saw that if A and B have all or no poles in
common the triple product can be written as (AaB)a G = A (Ba G) which provides a
new form for the product NaG if N = A B. Since we have always chosen C so that
the required conditions are satisfied, this decomposition is always possible and sometimes
convenient, because it gives an alternative semi-direct product with an invariant subgroup
of lower order. This is particularly useful when N is not Abelian, because it allows us to
reduce it until it becomes so. As an example, from the table,

O = (Dya Gy A G5 =Dya (G54 C3) = D,aDs.
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POINT GROUPS AS SEMI-DIRECT PRODUCTS 223

This shows that all point groups can be expressed in terms of semi-direct products the
invariant subgroups of which are cyclic. This result complements the theorem given at the
beginning of this section.

As we have said, the improper groups with inversion are most simply expressed by direct
products of the ten proper point groups with C,, say M x G,. Nevertheless, they can always
be expressed as semi-direct products. It can readily be seen that this is so because the mixed
triple product (A A B) x G satisfies the relation

(AAB)xC = Ax(BxCQ). (11)

Of course, the proper point groups M can always be written M = A A B from table 2 and
therefore (11) will yield the required expression. For instance,

D,, = D, x G, = (C,rC}) x G, = C, Cy.

Many new expressions can be written by exploiting the properties discussed for the triple
and mixed triple products. We leave them to the reader with a warning that, if they are used,
care should be exercised in specifying the relative setting of the groups that finally appear
in the products. It should be noticed that relations of this type are interesting not only for
academical reasons: they provide a very good method for establishing genealogical relations
between two groups, as appear, for instance, when the symmetry of a system is increased
or reduced by some perturbation.

Much of the importance of the semi-direct product arises from the fact that its irreducible
representations can be built up from those of its factors, as we shall see in the next section.

5. THE REPRESENTATIONS OF THE SEMI-DIRECT PRODUCT

We shall follow closely in this section a method used by Johnston (1960) to discuss the
reduction of space groups. We first review two general theorems, proofs of which can be
found in that paper.

(a) Reducibility condition for a group expressed in terms of the cosets
of one of its subgroups
Let us consider a group G with a subgroup H. G can be written as a sum of cosets of

H: G = 3 HC,; where the summation sign must be understood in the Galois sense (i.e. as
i

a juxtaposition) and the C;’s are the coset representatives of H. We shall agree to take always

C, = E. Also we shall write the basis of our representations as row vectors denoted with

a symbol such as {@| (¢ here represents one typical partner of the several functions of

the basis). Consider now {¢|, an irreducible basis under H. It can then be proved that

A=Y C/{¢| (symbolic summation again: direct sum) is an invariant space, and hence
i

a basis, of the whole group G. The first question is whether this basis is irreducible. This is
answered as follows:

Split A in subspaces A; = C;{¢|: it can be proved that A, is invariant under the group
CH = H;t. Consider now any two such spaces, A; and A,;. They span representations of

1 An example of the invariance of A and A; can be found in § 5 (b).
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224 S. L. ALTMANN

H; and H; of characters y' and y/, respectively. If H; denotes the set of all operations R
common to H; and H;, the irreducibility condition of A under G is
% ¥ (R)*¥/(R) =0, wherever ¢4, (12)
ReH;;
but this is valid only if the spaces A;and A, are orthogonal for all z and ;.

The second question is this: if A, generated in the way shown above by the basis (¢| that
belongs to the ith irreducible representation of H of characters y!(H), is reducible under G,
how many times will the jth irreducible representation of G appear in the reducible one
spanned by A? In order to answer this, notice that the matrices of the jth representation
of G that correspond to H form a representation of H: find the number of times that it
contains the ith representation. This is the same as the number of times that the jth repre-
sentation of G is contained in A.

(b) The star of the representation
Much of this section will be devoted to a proof of the invariance of the spaces A and A;
discussed in § 5 (a), now for the particular case of the semi-direct product. We do this in
order to introduce some concepts which are very useful in dealing with such groups.
Consider G = N a C where the orders of N and G are /g and /%, respectively, and iden-
tify N with the subgroup H of § 5 (a). Take a basis {§| of # functions that spans the kth irre-
ducible n-dimensional representations of N:

Ny = 24D (=152, ..., ). (13)

Here the coeflicients D*(N,),, are the s matrix elements of the matrix representative of
N, in this representation. We now form the functions
P=0Cyp, (v=1,..,hg;r=1,...,n) (14)
(since we always take C; = E, ¢,, = ¢,) and we shall prove that they form a space A which is
invariant under G. Consider a typical element of G, G, = N,C,,
| N,Cythy = N,C,C, (15)
We write C,C, = C_e G and we use the quasi-commutation relation (4) on the product
N, C, that now appears on the right-hand side of (15)

N,Cy = C,C1 N, . (16)
Since 1N, e N we can introduce (13) into this equation
N,Cy$y = C, 3¢ DHCTIN,),y = 3 6, DHC] 1N, ) (17)

Equation (17) gives the transform of any function ¢, of A under an operation of G in
terms of functions of the same space A, which proves the invariances of the latter.
Consider now the subspaces A;, spanned by the functions

¢ir:Ci¢r (7': 1929'“972)‘ (18)
We shall prove that A, spans a representation of N:
A{bgéir = A;Ciqsr = Cz’ O;l%gbrﬂ
= sz ¢5Dk(0i_lj\§7)sr

= 52¢isDk(C’l'-lACb)sr' (19)


http://rsta.royalsocietypublishing.org/

=

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

/|

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

POINT GROUPS AS SEMI-DIRECT PRODUCTS 225

The representation D¥(C;1N) is one derived from the original representation D¥(N)
of (13) by establishing the automorphism N — C;1 N (remember that C;! N must belong
to N because the latter is invariant under G). Two representations connected in this way
are called conjugate (see, for instance, Lomont 1959, p. 221) and in order to be able to
express briefly the relation between two conjugate representations we call €, D* the repre-
sentation conjugate to D under C,, that is we define an operator %, such that

#DH(N) = DHC; 1 ). (20)

It must be clearly understood that two conjugate representations are not in general
equivalent: if C;¢ N, C;!N and N do not belong in general to the same class of N and
therefore the two conjugate representations do not have the same characters.t On the
other hand, although the same element will have a different character in D*(N) and in
©,D¥(N), the characters that appear in both representations must be the same except for
the order. Hence, as we have chosen DF to be irreducible, %,D*, which is the representation
spanned by A;, will also be irreducible.

It is now clear that the space A contains all the irreducible representations of N derived
from the original one D by acting upon it with all the operators %; corresponding to C.
It can also be proved (see Koster 1957, p. 216, for a proof of a similar case that can easily be
adapted here) that there are no other representations in A. Summarizing, A contains all
the representations %,D* (all ¢,in C) and only these. A set of representations thus derived
from a given irreducible representation of the invariant subspace N of G = N a C is called
the star of the representation of G: every representation of G must contain only such repre-
sentations of N as appear in one star.}

We now wish to find out whether a star, that is the space A, is irreducible under the group
G. We shall discuss in this section the particular case when the star does not contain any two
representations of N that are equivalent. Hence, the spaces A; and A;, which span
inequivalent representations %, D* and %D’“, respectively, are orthogonal and we can apply
the criterion given by (12) of §5(a). We know that A; and A; span representations
of N (which of course also follows from the results quoted in §5(a): H; = ;!N = N,
H; = C;'N = N). Hence H;; = N and condition (12) reads

ZX(N)*p/(N) =0, forallisj, (21)
N

which is the case because the representations spanned by A; and A; are supposed to be
inequivalent.

An example of an irreducible representation of G for which the condition assumed in
this section is valid will be given in § 6 for the representation E of the group C,,. In this

1 The reader must not try to prove that D"(é,-’ ' N) and D*(N) are equivalent by writing
DH(C V) = DH(C; NC;) = DH(C;™) DH(N) D¥(C).
This is fallacious because the basis (| that spans a representation on N does not in general span a repre-
sentation of G: the symbol D¥((;) is meaningless and the symbol D"(é{ ' N) must be understood as explained
in the text.
1 It is usual in the literature on the semi-direct product (see Lomont 1959) to designate what we have

called a star with the name orbit, introduced by Mackey. We follow McIntosh (1958) in keeping a termin-
ology which parallels that due to Bouckaert et al. (1936), which is standard in the theory of space groups.

29 VoL. 255. A.
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and in similar cases one starts with a basis (¢| (representation D), generates all the bases
C,;{(¢| and finds that the %,D* (all C,e C) are inequivalent to Dt. The space obtained spans,
in accordance with the treatment of this section, an irreducible representation of G,
most simply generated as we have seen from one representation of N. Unfortunately, not
all the irreducible representations of a group G can be obtained in this way, that is to say,
there are stars that possess equivalent representations. The question of their irreducibility
will be answered in the next section.

(¢) The little group

Suppose now that some of the representations %, D%(N) (for all %, in C) are equivalent
to the representation D*(N) that generates the star. It can readily be seen that the set of
all operations C; of C for which %,D¥(N) is equivalent to D¥(N) forms a group which we
shall call K. In order to prove the irreducibility of the representations, it is more con-
venient to work with a supergroup of K that includes all the operations of G for which
GDE(N) is equivalent to D*(N). This is called the little group K or, to adopt a terminology
similar to the one current in the work on space groups, the group of k.t It is clear that K
contains N and K as subgroups, and that it can be written K = N1 K. It is important for
the purposes of the present section that the reader should carefully distinguish between K
and K. To stress this distinction we shall call the latter the /i#tle co-group (or the co-group of k),
since it is made up of the coset representatives of K with respect to N. For the purposes of
the proofs of this section we shall utilize the little group, but in practice, of course, it is
desirable to use the little co-group; how the passage from one to the other is made, when
possible, will be shown at the end of this section.

In order to consider stars that contain equivalent representations we express G afresh,
now in terms of its cosets with respect to K rather than those with respect to N as in the last
section. That is, we write G = 3 KS,, where, if we refer to § 5 (a) the symbols K and S, take

the place of H and (;, respectively. We can now form the representation spaces described
'in§ 5 (a), and accept their invariance properties as enunciated in that section. We can choose
the basis {¢| irreducible under K (see § 5(a)) so that at least one of the functions of {§|
belongs to the star of D* under consideration, say to the representation D* itself that gen-
erates the star. It is now simple to prove that all the functions of (4| must belong to D*
and correspondingly that all the functions of A, = §;{¢#| belong to P Dk ZD*and 9; DFcan
never be equivalent, because S; and §; belong to K. Hence the two corresponding spaces
A;and A; must be orthogonal and we can apply the irreducibility condition (12) of § 5 (a).
In order to do this we first note that the corresponding subgroups under which A; and
A; are invariant, K, = §iK and K; = §jK, respectively, admit N as a subgroup. Hence
K, the group of elements common to K; and K;, admits N as a subgroup, so that when
considering the sum €ZK ¥(R)* xi(R) we can use the reducibility condition described in
i

1 It should be remembered that & is the index that denotes an irreducible representation of the invariant
subgroup. For the space groups, these irreducible representations are identified by the so-called k vector
and the little group is the group of the k vector.

1 In order to do this write K = NAK and apply the theory of the last section, with K in the place of G
and K in that of C. Since {¢| spans a representation of K it can contain functions of one star only. The
star is now generated by the operations of K. As these are such as to leave D invariant, no other representa-
tion except D¥ can be found in the star and hence in the representation spanned by {¢|.
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the last paragraph of § 5 (¢). In accordance with this, the reducible representation yi(R) (all
Re K;;) contains an irreducible one x"(R) just as many times as the representation of N
given by y"(R) (all Re N) contains a certain irreducible representation of N, y#(R). We
know thatif y#(R) (R e N) appears in y/(R) (R e K;;) it cannot appear in y/(R) (because K;
and K; have no representation of N in common). Hence the irreducible representation
X"(R) (ReK,j) cannot appear in both x/(R) and x/(R) and the sum in question must vanish,
which proves the irreducibility of the representation of G that corresponds to the given star.

We have now seen that an irreducible representation of G = Na G is fully determined
by the star of the representation, and one irreducible representation of the little group.
But the star has now been re-defined: if D* is the representation used of the group K of
the star, the latter is obtained by adding to D* all the representations %D, for all G,eG
that do not belong to K. From the point of view of forming the bases for the irreducible
representations of G this result means that we can always form a basis {$| that spans both
an irreducible representation D#(N) of N and an irreducible representation of the little
group K of D¥: on forming the functions G;{¢| (all G, not in K) and taking their direct sum
we obtain a basis of an irreducible representation of G. An example of this situation will
appear in § 6 for the group G, (see table 3). In accordance with the procedure of the last
section the representation 4; would appear twice in the star. It will be shown in § 6 that for
this representation K = G;,, whence, the group of the operations of G not in K being void,
the re-defined star contains 4, only.

Although the above results are important, the theory requires further elaboration in
order to lead to a practical method for reducing G. This is so because in the above process
we require the previous reduction of K which may indeed coincide with G (this is in fact
often the case) and then the method suggested by our theorem leaves us almost where we
were before using it. It is in order to avoid this difficulty that we must try to replace the
use of the little group K by that of the little co-group K, which must always be of lower
order.

We shall first consider the case when the invariant subgroup N is Abelian. Consider the
space A, as defined in this section, spanned by a basis (¢| and irreducible under K. The
matrices D¥(N) on this basis can always be assumed to be diagonal if N is Abelian (because
as they commute they can all be taken to diagonal form by a similarity transformation).
Also, because K = Na K the basis (4| must span matrix representatives for all Ce K, and
since the DE(N) are diagonal, if the D¥(C) (Ce K) are reduced then clearly the repre-
sentation of K is also reduced, against the assumption. That is, if the representation spanned
by (4| (space A,) is irreducible under K it must also be irreducible under K. It should also
be noticed that the direct sum of the G; (4| (all G; not in K) is the same as that of C; (]
(all C;not in K). In this manner we work entirely in terms of the group K.

Clearly, the above result is also valid in a second case, namely, when N is not Abelian but
A, is one-dimensional, that is, when the representations of the star are all one-dimensional.
Before we deal with the third and most general case (N not Abelian, A; multi-dimen-
sional), we shall show how, in the two cases already considered, the reductionof G = N1 C
can be most simply effected. We first find the irreducible (one-dimensional) representations
of N. We take one of them, D¥(N) and form its star D¥(N) for all Ce C and find

the operations for which ¢D*(N) is equivalent (in fact identical on account of the
29-2
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non-degeneracy of the representation). These operations form the little co-group K. (In§6
a method will be given whereby this part of the work becomes trivial for the point groups.)
We now find the irreducible representations of K (which is itself a point group, smaller than
G and which can be assumed to have been previously reduced: very often, K cannot be more
involved than C,, as can be seen from table 2) and take a basis {(¢| that spans one of the irre-
ducible representations of K and that belongs to the representation D¥(N) of the star under
consideration. (This basis forms the space A; above.) Finally, we form the functions
C{¢| for all Ce C not in K, which form the desired partners of (4| in the irreducible repre-
sentation given by the star of D*. (The latter are the subspaces A,, A, etc.)

It must be clearly understood that although A, spans an irreducible representation of K,
the space A = 3 A, (in direct sum sense) which spans the irreducible representation of the

star and a reducible representation of K, contains representations of K other than that
spanned by A,. This is so because there is no reason whatever why the basis C{¢| should
span the same irreducible representation of K as (#|.t

It is also useful to remark that in both cases treated above, when two representations
of the star, say %,D* and %Dk, are equivalent, they must be identical, that is, representa-
tions of N can at most be repeated within a star. If we consider the way in which an irre-
ducible representation of G = Na G is formed, it is clear that this can only happen when
the representation used of the little co-group K (sometimes called the small representation)
is multi-dimensional. Since K is a subgroup of C and the latter can be taken always to be
cyclic in the first instance, this will be only the case when, N being non-Abelian, G is
expressed as a triple semi-direct product (such as was the case for O in the example of § 4).

In principle, the two cases considered, or rather the first one by itself, solve for us the
question of the reduction of point groups, as we have seen (§4) that they can all be written
in terms of semi-direct products with an Abelian first factor. Nevertheless, the third and
more general case is of practical interest, because, as we have already stressed, the general
semi-direct product expressions are very useful in relating the irreducible representations
of a group to those of an invariant subgroup, not necessarily Abelian. It is simple to see
what will now happen, when D¥(N), the representation used to generate the star, is multi-
dimensional: the representation spanned by {¢| (space A,), irreducible under K is no longer
irreducible under K. A, spans now a reducible representation of K and we cannot use the
procedure applicable in the previous cases. The complete theory of the method now re-
quired becomes rather involved (see Lomont 1959; McIntosh 1958), but for the point groups
it is possible to circumvent this difficulty by exploiting the fact that, if G = Na C and N is
not Abelian, the latter can be further factorized until an Abelian subgroup appears as
prefactor. We shall assume that in fact N = N’a G’ where N’ is Abelian and C’ is cyclic
of prime order. For this particular case, which is the only one that arises for the point groups,
the theory is very simple.

We shall first give a general result for the semi-direct product N = N'AC’, with N’
Abelian and C’ cyclic of prime order: if D¥(N) is multi-dimensional its corresponding little
co-group must be G, (the identity only). In fact, D*(N) must correspond to the star of,
say, Di(N') and because G’ is cyclic this star cannot contain repeated representations.

T An example of this situation can be found at the end of § 8 (c).
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Therefore, at least some operations of G’ must generate representations ¢’ DJ(N') different
from DJ(N’), that is the little co-group of Di(N’) must be smaller than C’: also it must be
a subgroup of C’. As a cyclic group of prime order admits G, only as a proper subgroup our
result is proved. (It should be noticed that this result also means that each operation of C’
generates a different column of the representation D¥(N).)

Consider a representation of G = N a C = N’ G’ A C corresponding to the star generated
by the multi-dimensional representation D*(N), with group Kg. (The suffix here identifies
the little co-group in an obvious manner.) Because N = N’AC’, D¥(N) is, in its turn,
generated by the (one-dimensional) representation DJ(N'), the little co-group of which,
here denoted with Jg, is equal to G, in accordance with the result just obtained.

We now write G = N'A CG'AC = N’ C”, say, and the irreducible representation of G in
question must be generated by Di(N’) with a little co-group Jgr. It can be seen that
Jo = JoaKg= CaK; =K, This means, in accordance with our result for Abelian
invariant subgroups, that the basis of D/(N') can be chosen to belong to one of the irre-
ducible representations of K. But the basis of Di(N”) is clearly a partner in D¥(N), that is,
a function that belongs to one of the columns of D¥(N). Hence, we have proved the following
result: under the conditions stated, D*(N) can be chosen so that one of its columns belongs
to the little co-group of'its star. Of course, the formation of D¥(N) itselfis no problem, as it
must be provided by the factorization N = N’A C’. An application of this result will be
found in § 8 (¢).

(d) The representations

We have now all the necessary tools to derive the representations for the point groups.
Given G = N G we know that in an irreducible representation D/(G) the matrices for
Di(N) will be direct sum of matrices D*(N), D¥(N), etc., that span irreducible repre-
sentations of N. They are all generated from D¥(N) by forming ¢ D¥(N) for all C e C. Also,
we know how to select D¥(N), the generator of the star: if it is one-dimensional, it must
belong to one of the irreducible representations of the co-group of the star and if it is not
then, under certain conditions (see § 5(¢)), one of its columns must belong to the co-group
of the star. These conditions fully determine the matrices D/(N), as will be clear when we
consider some examples (see § 8). Once we know the matrices D/(N) we must also know,
or otherwise we can easily determine by standard methods (see § 7) the bases of the repre-
sentations. It is enough to transform these bases under all the operations of C (which as
we have seen is most often a very simple group such as G,) and therefore we have, by
multiplication, matrices for the whole group G.

There is a useful result about the general form of the matrices D/(C) for the particular
case when all the representations of the star are one-dimensional and different. This follows
from the way in which we generate a basis for the representation by forming the sub-
spaces A, A,, etc., of §5(¢c). A, will now be just a function ¢,, that belongs to one of the
representations of K, which will be assumed larger than C,. We shall normally write this
function as the first or last of the basis and shall call it the pivot of the representation. ¢,
belongs to an irreducible representation of N and the other functions ¢,, ¢,, etc., of the star
(spaces Ay, A, ...), generated by Cg,, with C¢ K, belong to different irreducible repre-
sentations of N. When Ce K it leaves the pivot invariant, but multiplies it, of course, by
whatever numerical factor that corresponds to the irreducible representation of K in


http://rsta.royalsocietypublishing.org/

0
'am \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y |

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

230 S. L. ALTMANN

question. This factor will appear in the diagonal matrix element of D/(C) that corresponds
to the same column as the pivot. When C¢ K it interchanges the functions ¢,, ¢,, s, ... in
such a way that the pivotis always taken out of position: D/(C) will be such that the diagonal
matrix element corresponding to the pivot vanishes and the other matrix elements are those
of Di(N) but in general, in different positions.

When G = C,, which is often the case, the functions that are not pivotal are just inter-
changed by C,, as can be readily demonstrated. Hence the diagonal elements of their
matrices must always vanish.

Of course, when D*(N) is diagonal, if a diagonal matrix element of D¥(C) vanishes, the
corresponding matrix element for all G € G must also vanish.

It should be noticed that when K = C;, we have no pivot, except in a trivial sense, and
hence, that the diagonal elements of D/(C) for all G (except £ of course) must all be zero.
An example of this type of structure can be seen for the representation £ of G, (see table 3).

Clearly not all representations that one can write will have the simple structure described,
because a unitary transformation will generally destroy it. This is the case, for instance,
when one obtains a real representation for the representation E of G;, just mentioned.
Nevertheless, the fact that representations exist which have the simple structure described
before has important consequences (see § 7).

6. Ture k veEcTOR

We shall now write down the representations D*(N) in a more explicit way, and we shall
introduce an artifact, the k vector, that allows us to visualize very simply these representa-
tions and hence to simplify the various operations described in § 5 for reducing a group.

The n irreducible representations of a cyclic group G, of order 7 are, as is well known,
(see, for instance, Altmann 1962, p. 158)

DE(C,) = exp{i(2n/n) kr} (k,7r=1,2,...,n). (22)
A representation of a direct product of / cyclic groups will be denoted by a multiple
index k£, ... k, and is given by
Dhikeia(C, C,. ...C,) :expi(?klrﬁiﬂkzrﬁ...+2’(/sm). (23)
1 2

i Tre *‘7‘2—1
In order to write (23) more compactly we introduce, as a mathematical artifact, two
vectors k = kyx,-+hyx,+...-Fkx, and r =7, +rw,+ ... rr, where k| =1 and
|7;| = 2m[n; for ¢ == 1,2, ...,1. Also, we impose the orthogonality condition

;.7 = 0;;2mn,. (24)
Then, we can rewrite (23) as follows
Dk(CI) — ei k.r. (25)

A very well-known example of this is the translation subgroup of a space group, which
is a direct product of cyclic groups when the Born-von Karman periodic conditions are
used. The vector r here can be identified with a translation of the lattice. As the vectors
T,,Tg, ...,%, (Which are taken along the primitive axes of the crystal) are not in general
orthogonal, the vectors x,k,, ..., x, must be defined as unit vectors of the reciprocal lattice
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in order to verify the orthogonality condition (24) and the vector k which denotes the
representation can be easily described as a reciprocal lattice vector.

This interpretation of (25) can be extended for the case when the group C, is one of
rotations around an n-fold axis. However, there are two important differences to be noted
in this case. As we have seen, the introduction of the k vector is particularly valuable in
dealing with direct product groups. Now if G, and G,, are groups of rotations about two
different axes the condition for their products to form a direct product group is that every
C, commutes with every C,,: this happens only in a most exceptional case, namely, when the
rotation axes are perpendicular and the rotations binary. This is in fact the case for the two
binary axes of D,: besides T which will be treated later, this is the only non-cyclic invariant
subgroup that we have to consider, and so this stringent restriction does not, fortunately,
prevent the use of the K vector in our case. In fact, because the rotation axes are orthogonal,
it is not even necessary to introduce a reciprocal space: our k vector will be defined in the
same space as the r vector. The vectors =; which correspond to the rotation by 27/n; around
the axis 7, will be defined as axial vectors positive for counterclockwise rotations, parallel
to the rotation axes and of length |v;| = 27/n,. Accordingly the «; will be axial unit vectors
parallel to the =;. It should of course be clearly understood that this vector representation
of finite rotations is only valid because we restrict ourselves to the case when the rotations
commute. As regards the second difference to be made in dealing with rotations, we have
already allowed for it: if a vectoris to represent a rotation at all it must be an axial vector:
it should be particularly remembered that an axial vector changes sign when it is reflected
on a plane parallel to it.

It might be thought that the concept of a k vector would break down for the group T,
and indeed it would fail in general, because the rotations around the threefold axis do not
commute with those around the binary axes. Nevertheless, there are two cases for which
this commutation is valid: when the rotation around the threefold axis is the identity
(rotation by 27) and when the rotations around the binary axes are the identity rotations.
Trivial as these cases are, they are the only ones that appear in practice, and this allows us
to denote the irreducible representations of T by a k-vector, as will be shown in § 8 (5).

A practical detail which should be noticed concerns the labelling of the components £,
of the k vector. In accordance with (22) &; = 1,2, ...,%;, and a multiple of »; can always be
added to ;. It is more convenient to symmetrize this interval, that is, if , is even, say, to
take k; = —1n,, ..., 3n;, and similarly for n, odd.

The k vectors allow us to obtain very quickly the star of a representation and, therefore
its little group. Given a representation D¥(N) its star is given by the representations
@D(N), for ¢ in C. Now €D*(N) = D*(C-'N) and if N is identified with C, this is the
same as to write k.C~Ir in the exponent that appears on the right-hand side of (25). Be-
cause the operators concerned are unitary k.C-r = Ck.r; that is, in order to form the
conjugate representation of D* under % it is enough to find the representation for which
k takes the value Ck. (When interpreting this latter symbol, remember that Ck is the value
of k when the axes have been transformed by the operation C.)

In order to show how this work is carried out in practice we shall consider the group
C,, = C3A G}, where G} = E+0,, and ¢, is a mirror plane that contains the rotation axis
of G;. First, the k vectors and representations of G;: the unit vector x will be parallel to the
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threefold axis and the k vectors will be —1, 0, 1, in units of k, as follows from the (sym-
metrized) range for k given in (22). The star of k =—1is £(—1) =—1and ¢,(—1) = 1;
the co-group of k for this star is the identity because no operation of G, leaves a k of the star
invariant. The star of k = 0is clearly made up of the representation k = 0 only : its co-group
of k is now Gj. (Notice that the groups of k are, for the two stars given, G; and G,,, respect-
ively, but, of course, as explained in § 5(¢), we do not require them in this case, since G,
is Abelian).

We next require the representations of the co-groups of k (G, = £ and C,) and of C,.

The representations of G, are C. E o
A4 1 1 (26)
All 1 . 1

Those of Gy are derived from (22) and are given in the left of table 3.

TABLE 3. THE REPRESENTATIONs OF (i;, IN RELATION TO THOSE OF Gy

C, is a counterclockwise rotation by $7. Cyo, and C3 o0, are mirror planes that form angles of 7 and
— 27 respectively with o,.

C, E ¢ (€ G, E Cy C3 o Cyo, Cio,

NI - . _ _ _ —
KN\ 0 1 2
co-group
of k
/A1 1 1 1 1 1 1
4, 0 star G, 1 1 AN
4, 1 1 1 -1 -1 -1

S L el IEIEIILLT

An irreducible representation of G,, will be fully determined by the star from G4 and one
representation (the small representation) of the co-group of the K vector of the star. Because
the group of 4, (k = 0) is G,, 4, of G; will produce two irreducible representations of G;,,
in which the representatives of ¢,, from (26), are +1 and —1, respectively. Those of the
remaining operations of G, are most simply obtained from the law of formation of the
group as a product of G; and C,. The representations !% and 2E of G; are joined together
in the same star, with G, as co-group of Kk, so that they will form just one two-dimensional
representation of Gg,. The matrices for the subgroup G; of G;, must be diagonal as shown
in the table, because if ¢; and ¢_, are bases of LE and 2E, respectively,

C3l1, 94| = (edy,e*g_y]

as follows from the representations of C;. In order to determine the remaining matrices
it is enough, as before, to determine that for ¢,. This follows immediately because

7, (P15 P-1| = {P-1, ¢1]-

It is often desirable to obtain representations in real form, rather than the complex one
shown in table 3 for C,,. This can be easily accomplished by a unitary transformation,
such as that given by Altmann (19574, p. 354).
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7. THE BASES OF THE REPRESENTATIONS

It is well known (see, for instance, Altmann 1962), that if we possess the representations

of a group G, the operators
Wi.= 2 D(G,)i,G, (27)

constructed from them are such that they transform an arbitrary function ¢ into another
one ¢i—which following Melvin (1956) we shall call a symmetry-adapted function—that
belongs to the fth column of the ith irreducible representation of G:

Wiug = ¢ (28)
If [, is the dimensionality of the ith representation the suffix # in (27) and (28) can take

any of the values 1, 2, ..., /.
Another important relation for these operators is the following

I/Vtzu¢i)] = ¢§3ij3uu- (29)

When G = NaC, we shall show that considerable simplification in the use of the
operators (27) can be achieved by solving the problem stepwise: we first use (28), with the
operators that correspond to N, to obtain functions that are symmetry adapted with respect

to it. When these functions are themselves introduced in (28), now for the full group G,

a simpler expression is obtained.
We can write G = X NC,, and then
i

Wi =22 DI(N,C)i; N;C;
= 2 2 DI(GN)F; G, (30)

Here, in the second step, we can commute C; and N, because, on account of the invariance
of N, both summations will cover exactly the same elements, except for the order. We can
now express D/(C;N,), by means of the standard matrix multiplication rule

Wi =23 DI(C);, DI (N,)3 G A

r su

=2 2 DI(C)5 C;Z DI(N) N, (31)

We know that the matrices D/(N) will be direct sums of matrices of irreducible repre-
sentations of N, all derived star-wise from a given one D*(N). This means that the sum-
mation over s in (31) forms an operator like (27), for the group N. Now, we assumed that
we have bases for this latter group, which for simplicity we shall label ¢/ although different
values of ¢t may clearly belong to different representations of N. We operate with W7, as
given by (31) on ¢: from (29) the summation over s gives ¢;, whence

Wi, =33 Di(C) L, Cil. (32)
It should be carefully noticed that ¢/ here is nof a function that belongs to the jth repre-
sentation of G: nevertheless, the left-hand side of (32) must be one such function on account

of (28). This is obtained by projecting over the subgroup G the functions that belong to
all the columns of the representation of N subduced by DJ(G), and adding them up. If

30 Vor. 255. A.
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n is the order of N and m that of C it is clear that we require to consider only z-m matrices
in the whole stepwise procedure, rather than n.m (order of G) in the direct one.

The use of (32) can often be considerably simplified by bearing in mind the structure
of the representations, as described in §5(d). We know that, when ¢ is the column corre-
sponding to the pivot of the representation the matrix elements Di(C;N;), vanish whenever
C;¢ K. This means that in (30) and therefore in (32) we must add only over the operations
C;c K. IfK is G, every column can be considered a pivot and we have to add in (32) over
the identity only: the bases of N are taken over unchanged for G.

If K = C, or C, the functions which are not pivots are such that for them Di(C;N,), = 0
for all C;: hence the non-piwotal functions of the basis of N are unchanged when going over to the
group G, and the pivot has to be projected over K. These results are valid only when Di(N) is
diagonal and does not contain repeated representations of N. This is by far the most com-
mon case, and the rules given can be easily adapted for the case when D/(N) is not
diagonal.

Although the application of these rules would anyhow be self-evident if a representation
such as that displayed in table 3 for E of G,, were used, it must be understood that these
rules still obtain for any other, similar, representation, such as the well-known real one
(see, for instance, Altmann & Bradley 1962) even though for the latter the cancellation of
matrix elements described here does not take place. It is indeed for representations of this
kind that the greatest benefit is derived from our rules, owing to the large number of
non-vanishing matrix elements that such representations contain.

As an example, we shall consider C;, = G54 G,. We shall start from bases for G; and we
shall take them, as in the rest of this article, to be spherical harmonics both because these
are the most natural functions to use as bases for the representations of the rotation group,
and because there exists a considerable body of results for these functions (see Altmann
19574, and Altmann & Bradley 1962). For simplicity we shall use unnormalized spherical

harmonics Y7(0,4) = Pr(cost) e, (33
as well as their real forms #me(l, ¢) = Pr(cosl) cosmp, (34)
@m0, ) = Pr(cosf) sin mg. (35)

The bases for G; are very easily obtained and they are given by Altmann (19574, 1962).
We follow the latter reference, where the notation agrees exactly with that of table 3.
The bases for 4 of G, are all the harmonics 7 with m = 0, mod 3. The bases for 4, and
4, of Gy, will therefore be, from (32),
yn gy, (36)
respectively, where the -+ sign corresponds to the two representations of G, listed in (26),
and o, stands for a mirror plane parallel to the axis of G,;. The transformation of the spherical
harmonics under proper or improper rotations is well known and will not be described here
(see Altmann 1957a). We write ¢, = iCj, where Cj is a binary rotation perpendicular to
the Cjy axis and ¢ the inversion. In order to transform the harmonics we require the Euler
angles of the rotation C,. They are « = 0, f = m, y = 0 and therefore, from equation (29)
of Altmann (19574) we have 0,47 = # ;™. On introducing this result in (36) we find
that the bases for 4, and 4, of G, are respectively #»¢ and #7»*, with m in every case
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equal to 0, mod+3. (We write mod -3, in an obvious notation, to stress the fact that no
new function results when a negative m is taken.)

The group K for E of C,, is C,. Hence, we can simplify (32) or rather avoid its use
entirely in this case by means of the rules given above: the bases of !E and 2E of G, which
are ¥, ;™ m = 1 mod 3, are straight away bases for E. They can be written as the row
vector (¥, U ;™.

8. D, AND THE CUBIC GROUPS

We shall apply in this section the whole theory that we have developed, now for a family
of point groups: besides providing a useful example of the theory, this treatment will show
how the method allows us to relate several point groups.

(a) The group D,

From table 2, D, = G, x G, where the two binary axes are perpendicular. To indicate
this fact most simply we shall change the notation. Define G,, = E+C,,, Gy, = E+Cy,
and then D, = Gy, x G,,, where C,, and C,, are mutually perpendicular. Being a direct
product, the representations of D, are obtained by elementary methods: we shall derive
them here only to identify the k vectors of the representations. The representations of C,,
and G,, can be immediately written

G, k, E C, G, k E G,
A 0 1 1 A 0 1 1
B 1 1 —1 B 1 1 —1

(37)

Here, the values of k follow immediately from (22). The direct product is given by
D, = E+Cy,+Cy,+Cy, with Cy, = C,,C,,, a binary axis perpendicular to the other two.
When forming the representations for D, those of G,, and G,, are combined in the standard
manner, and we have a two-component k vector, the first and second component corre-
sponding respectively to the value of k, and k, obtained from (37). These representations
are given in table 4.

TABLE 4. REPRESENTATIONS AND BASES (SPHERICAL HARMONICS) FOR D,

D, k E Cy, Cyy C,, ! m mod(+2)

4, (00) 1 1 1 1 0 9 ‘

B, (o1) 1 1 -1 ~1 2 ! !
B, (10) 1 ~1 1 ~1 i h ‘

B, (11) 1 ~1 ~1 1 2 2 !

In the last three columns of table 4 we specify, for future reference, the spherical har-
monics, given by Altmann (19574), that span the irreducible representations. These
columns give the permitted values of / and m, and the superscripts ¢ and s that appear in
(34) and (35). In every case +2 can be added to m, as indicated, as well as to /.

It should be noticed that the two-dimensional k vector can sometimes be more easily
visualized through a three-dimensional one, the third (redundant) component corre-
sponding to z. In this notation (11) = (001) as follows from the relation C,,C,, = C,,.

30-2
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(b) The group 'T
From table 2, T' = D, A G; where the axis C; of G; must be taken along the diagonal of
the positive octant formed by the x, y, z axes of D,. We first find the stars of the representa-
tions of T: (00) (of D,) will be a star on its own and its co-group is G;. The star of (01)
will result from the axes transformations C;" (xyz) = (yzx), Cy (vyz) = (zxy). Hence

C(01) = (001) = (11)

(this involves nothing more than to recognize that C§y = z) and C5 (01) = (10). That is,
(01), (10) and (11) form one star, the co-group of which is C,, the identity.

As G; is the co-group of the star of (00), we require its representations, as well as those
of D,, in order to obtain the representations of 'T'. They are given in table 5 and those of

D, in table 4.
TABLE 5. THE REPRESENTATIONS OF C,

€ = exp (3mi)
(0N k E Cy Cy
4 0 1 1 1
IE 1 1 € e*
2L 2 1 e* €

The star of (00) (co-group G;) will produce three one-dimensional representations, one
for each of the representations of G,. Their derivation is now obvious. The star of (01),
which is three-dimensional and has G, for its group, will give one representation.

The matrices of the operations of T that belong to D, are, as we know, direct sums of
the representations of D, that correspond to the star. That for C,,, for instance, will be

1
{ —1 ] (38)
—1

The matrices for the operations of T not in D, must have vanishing diagonal elements,
because we have no pivot, the group of the star being G, (see§ 5 (d)). Hence their characters
must vanish. We give the characters of the representations of T' in table 6.

TABLE 6. THE CHARACTERS OF THE REPRESENTATIONS OF T'
AND THEIR RELATION TO D2

€ = exp (4mi)

co-group l m
D, k(D,) ofk T k(T) E 3C, 4C¥ 4C5. mod (+2) mod (+2)
A (00,0 1 1 1 1 — -
4, 00 < £ ((?)g, ;)) L 1 e o _ _ _
A € € — — —_—
B,  (01) (01, 0) 2 2 s
B, (10) G>T [10,00] 3 -1 0 0 1 0 ¢
B, (11) [(11,0)] — 1 (¢, 5)

Two remarks must be made about the k symbols for T that appearin table 6. They cannot
be regarded as three-dimensional vectors: the symbols on the left of the comma refer to the
C, axes (as given for D,) and those to the right to the Cj axis (as given for C, in table 5).
Operations about these different axes do not commute; the symbol is meaningless unless
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the D, or the C; parts of it vanish. This is in fact the case for those k ‘vectors’ in the table
and they can therefore be used. Secondly, either of the three k vectors given for 7'is enough
to denote fully this three-dimensional representation, and in order to stress this fact we give
the redundant symbols in the table within square brackets. It is, nevertheless, useful to
list all the partners in the star.

We shall now get in full the three-dimensional representation and its bases, which as
always we take to be spherical harmonics. As regards the bases we know, because the
co-group of the star is G,, that the bases of the representations of D, that generate the star
will be taken over unchanged for T. We can read them off from table 4 and we collate the
results in the last three columns of table 6. In the last line we use the symbol (¢, s) for a pair
(@, 4ms| that can be associated with any harmonic of the two previous lines to form
a three-dimensional basis. No [ value is given for this pair because [ is arbitrary.
To span the representation we can choose a basis from table 6. Take, for instance,
(HYe, s, %Y. The representation will be fully determined if we have the matrices for
Cf and C3. In order to obtain them, it is enough to transform the harmonics under these
operations. For the basis chosen this is trivial, as these harmonics have a very simple
Cartesian representation. In a more general case recourse has to be taken to the method
given by Altmann (19574). The Euler angles for C§ are « = 0, f = }m, y = 0. The trans-
formation is effected by the following expression (see Altmann 1957a4)

A = 30y G,y 07 e, (). (39)
Here C,,,, can be either 41, and is tabulated in table 6 of that reference; ¥, (37) is
tabulated up to/ = 6 in table 10 of Altmann (1957 a) and tables for it up to / = 12 have been
computed (see Altmann & Bradley 1962). It is quickly found, in either way, that

Ci (@Yo, ot 9| = @9}, 91
therefore the matrix is

D(C}) = [ 1 1} . (40)
1

In the same manner D(Cy) is obtained. The matrices of the operations that belong to
D, are obtained as in (38) and by multiplication the whole representation follows. It can
be seen in full in table 7 of Altmann & Bradley (1962).

The derivation of the one-dimensional representations is trivial but not so that of their
bases because the group is now G;. We have to project the bases for 4, of D, over C,. The
general features of this projection can be quickly obtained because Altmann (1957a) has
given, for any value /, m of an harmonic used as a generator of the expansion (28) a table
that gives the values of / and m of the harmonics that will appear in the expansion. We know
the possible generators for the required expansions, as they are read off from the two lines
of table 4 that correspond to 4,. The values of / and m that will appear for these generators
are now obtained from table 13-1 ('T®) of the reference mentioned. Theyare given in table 7,
for the representation A4 of T.

The complete symmetry-adapted harmonics for 4 can be easily obtained by forming,

from (32) Yy CLT -+ Cr T, (41)
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where #* must belong to 4 of D,. The transformations required in (41) are effected by
means of (39): if we take #§ as the generator we find that (41) assumes the form _
VY258, (4m) T+ 298, (3m) 74 2500 — VY +kgT b, (42)

Here we obtained the symmetry-adapted harmonic in the right-hand side after replacing

in the left the values of %, (m) obtained from the references mentioned.

TABLE 7. SPHERICAL HARMONICS FOR A oF T

A single symmetrv-adapted spherical harmonic will be a linear combination of several of the functions
listed below.

{mod(+2) mmod(+4) @
0 0
3 2 $
6 2 ¢
9 4 )

(¢) The groups O and T,

We shall use the expressions O = TG, and T, = T s G, where the C, axis bisects the
first quadrant in the xy plane (defined as in D, and T') and the mirror ¢, of G, contains both
this C, axis and z. The stars and little co-groups of the representations, as well as the way
in which they go from D, to O and T, are shown in table 8.

TABLE 8. THE RELATION BETWEEN THE REPRESENTATIVES OF
O anp T, anDp THOSE OF T

little co-group

——P representations
T k(T) o T, of Oor T,
A
4 (00,0) star C, C, < i
\E (00, 1)
°F (00, 2) } star G, G, >E
01,0 T,
T [(10, 0)]} star C, C, <
[(11, 0)] T,

The details of the table should now be clear: it is enough to say that, for instance, (00, 1)
and (00, 2) appear in the same star because C, and ¢, transform C;r into C3 and hence
(00, 1) into (00, 2) (see table 5). The actual form of the representations can now be readily
obtained and will not be given here: they can be compared if necessary with the represen-
tations given by Altmann & Bradley (1962).

We shall show briefly how the bases of the one-dimensional representations are derived:

we must form, from (32), @y +D(C) Cop, (43)
where #™ must be one of the harmonics for 4 of T listed in table 7 and C is either C, or
o, for O and T, respectively. D(C) will be unity for the totally symmetrical representation
of G, and G and —1 for the other. In order to obtain C%* we require the Euler angles of
Cy (=0, f=m, y = 4n) and we must write ¢, = iC; (binary rotation with Euler angles
« =0, =m y=—4%n). Then, on using equation (29) of Altmann (19574),

Co¥m = (_l)le—%imﬁ@l—m’ (44)

O-U@;?l — e%im?r @l—m' (45)
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In these equations m can be positive or negative: accordingly, similar equationsare
obtained for #7»¢ and #$. For instance, for the harmonics that appear in the second row

of table 7, (43) gives: Y25 FD(C) W%, (46)

where the — sign corresponds to O and the -+ sign to T,. Itis clear that this harmonic will
vanish, for O, when D(C) =1 and for T, when D(C) = —1. Otherwise it will survive
unchanged (except for an irrelevant factor). This means that this harmonic belongs to
A, 0f O (D(C) =—1) and to 4, of T, (D(C) == 1). The remaining harmonics of table 7 are
similarly treated: in every case they belong to one or the other of the representations 4,
and 4,. A complete table of this splitting is given by Altmann & Bradley (1962, table 4).

When we consider the three-dimensional representations, we meet for the first time a case
where the representation D¥(N) of the invariant subgroup that generates the star is not one-
dimensional. In fact, it is the three-dimensional representation 7" of T, which is the only
representation that appears in the star. (This is clearly the case because this representation
is invariant under the operations of G, and also because it cannot be repeated since G, is
cyclic.) We can use very simply the result given at the end of § 5 (¢). This means that a basis
for T, or T, of O will be obtained by taking a basis for 7" of T such that one of its columns is
either symmetrical or antisymmetrical with respect to C,. The bases for T of T are given
in table 6, and the column in question can be most conveniently chosen from the harmonics
given in the first two lines for 7. Their symmetry properties can be obtained by methods
already fully described and will not now be repeated: if necessary they can be obtained
from Altmann & Bradley (1962), where full tables for the representations can also be
found. ’

The factorization O = T A G, fully describes, of course, the representations and bases
of O. It might be useful, however, to consider briefly the factorization O = D,AD,. If
the axes of D, are parallel to the edges of the cube, the C; axis of D, joins two opposite
vertices of the cube and the three binary axes of D, are the three, out of the six, binary axes
that join opposite edges of the cube and that are perpendicular to the Gy axis chosen. If
we refer to the representations of D, we have two stars: (00) (co-group D) and (01),
(10) and (11) (co-group G,, where C, is the bisector of the first quadrant in the x, y plane
in our standard set of axes). The representations of D, are two one-dimensional (4, and 4,)
and one two-dimensional (E) and it can be seen that the representations of O that are
derived are the same as before. In particular the three-dimensional star will give two
three-dimensional representations of O, 7; and 7, in accordance with the two irreducible
representations of G,. In order to generate the star we take one function ¢ that belongs to,
say, the symmetrical representation of G, and to one of the representations of the star
say (11) (see table 4). This will be the space A, of §5(¢) and also the pivot of the repre-
sentation. The other partners of the representation, that is the spaces A, and A, are obtained
by acting on ¢ with the operations of D, not in G,, that is with E, C3, C5. They must corre-
spond to the other representations (10) and (01) of the star, just because these operations
do not belong to its co-group. When this work is done, it will be found that C§ ¢ and C5 ¢
will belong to the antisymmetrical representation of G, or, in general, to the one which is
opposite to the representation of ¢. We quote this result as an illustration of the situation
mentioned in the footnote to page 228.
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